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Abstract

Most optimization problems naturally have several objectives, usually in confl ict with each other. The problems with two or three objective functions are referred to as Multi-
Objective Problems (MOP). However, many real-world applications often involve four or more objectives, which are commonly recognized as many-objective optimization problems 
(MaOP). Multi and many-objective algorithms have a great application in engineering science. This study addresses a complete and updated review of the literature for multi and 
many-objective problems and discusses 32 more important algorithms in detail. Afterward, the ZDT and DLTZ benchmark problems for multi-objective test problems are reviewed. 
All methods have been studied under recent state-of-the-art quality measures. Moreover, we discuss the historical roots of multi-objective optimization, the motivation to use 
evolutionary algorithms, and the most popular techniques currently in use.
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introduced and successfully applied in solving multi-objective 
problems [8].

Problems with a small number of objectives, mainly in two 
or three objectives are referred to as Multi-Objective Problems 
(MOP). However, many real-world applications often involve 
four or more objectives, which are commonly called as Many-
Objective Optimization Problems (MaOP). In many-objective 
optimization problems, the proportion of non-dominated 
objective solutions increases rapidly with the number of 
objectives [9-11]. This leads the Pareto optimality to signifi cantly 
diminishing selection pressure during the evolutionary process 
[12-14] which will be explained in more detail later. 

There are many techniques for handling multi and many-
objective optimization problems. We will use the following 
classifi cation of optimization approaches in this paper:

1.   Multi-objective optimization techniques

a. Mathematical techniques

b. Non-Pareto techniques

c. Pareto techniques

Introduction

Optimization has been expanding in all areas of engineering, 
medicine, and the sciences [1]. Most optimization problems 
naturally have several objectives to be achieved which are 
usually in confl ict with each other. This means that there is no 
single solution for these problems [2]. One way to handle these 
types of problems is by using the Pareto front. The Pareto front 
is the plot of the objective functions whose non-dominated 
solutions, in the sense that there are no solutions superior in all 
objectives, are in the Pareto optimal set [3,4]. Mathematically, 
the problem can be written as follows [5]: 

Maximize [f1(x), f2(x), …, fm(x)] 

ST: gi(x) ≤ 0, i=1, …, k

There are many methods to handle multiple objective 
problems. Historically, classical optimization methods suggest 
converting a multi-objective problem to a single-objective 
problem by different techniques [6,7]. In these cases, the 
obtained solution is highly sensitive to the weight vector 
and user knowledge. Later, evolutionary algorithms were 
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Multi-objective optimization techniques

As it was mentioned earlier, problems with a small number 
of objectives, mainly two or three objectives are referred to 
as multi-objective problems (MOP). Methods examined in 
this section are classifi ed into mathematical, non-Pareto and 
Pareto techniques.

Mathematical methods: Dynamic Programming (DP) and 
Stochastic Dynamic Programming (SDP) methods are powerful 
optimization techniques that solve a multi-stage problem by 
sequentially optimizing a recursive equation, one stage at a 
time. At each stage, an optimal value will be assigned to the 
decision variable depending on the state of the system. While 
in the deterministic case this decision is based on known 
information; in the stochastic problem, the decision is based on 
the probability distribution of the variable [25]. Multi-Objective 
Dynamic Programming (MODP) and Multi-Objective Stochastic 
Dynamic Programming (MOSDP) are developed based on the 
single-objective methods and have been used as techniques 
for solving problems that involve sequential or multistage 
decision-making [26-28]. In these methods, one objective is 
considered the primary objective, and others are assumed as the 
secondary objectives. Unlike the single-objective DP and SDP, 
the multi-objective methods use two types of state variables. 
The fi rst type, also called the primary state variable, represents 
the primary objective function. The secondary objectives of the 
system are represented by the second kind of state variables. 
Here, for particular combinations of secondary state variables, 
the primary objective is optimized [29]. In these approaches, 
the levels of secondary state variables are not varied stage-
wise [30]. Another approach for MODP and MOSDP is by using 
weighted aggregation of objective functions [31].

Discretization of the state variables in DP-based methods 
is a basic limiting factor that affects the performance of the 
optimization process. Recently, the application of dynamic 
programming in conjunction with fuzzy sets (FDP) has been 
suggested as a solution to help in overcoming this problem 
[29]. Another diffi culty in using the DP-based methods is the 
high computational costs due to the curse of dimensionality. 

Non-pareto techniques: Non-Pareto techniques convert 
the multi-objective problem into a single objective via various 
methods. Although these techniques are effi cient and easy to 
implement, they are incapable of producing certain portions 

2.   Many-objective optimization techniques

3.   Ancillary techniques.

There are few surveys on multi and many-objective 
algorithms. Marler and Arora [15] focused on non-Pareto 
techniques. Zhou, et al. [16] studied multi-objective problems 
up to 2011; hence many recent algorithms on multi and many 
objectives are missing in their review. Also, Giagkiozis, et al. 
[17], just presented population-based algorithms for multi-
objective optimization. Qu, et al. [18], studied the research only 
related to multi-objective problems. On the other hand, Li, 
et al. [19], discussed only many-objective algorithms in their 
study. Their review is based on the category of many-objective 
algorithms rather than discussing algorithms in detail. In 
addition, more recent important Ancillary methods are missing 
in their study. Petchrompo, et al. [20], stated that it is diffi cult 
for decision-makers to identify the most promising solutions 
from the Pareto front. They proposed alternative approaches 
that can autonomously draw up a shortlist of Pareto optimal 
solutions so that the results are more comprehensible to the 
decision-maker. They called these alternative approaches the 
pruning method.

This study contains a complete and updated review of 
the literature for both multi and many-objective problems 
where 32 more important algorithms are discussed in detail. 
Mathematical methods, Non-Pareto Techniques, Pareto 
evolutionary techniques for multi-objective problems, many-
objective approaches, and ancillary methods which can be added 
to different algorithms in order to improve their performance 
are discussed together. Moreover, the benchmarks for multi-
objective test problems are reviewed. These make the current 
study a complete package for multi and many-objective 
algorithms. All methods have been studied under recent state-
of-the-art quality measures. We will discuss the historical 
roots of multi-objective optimization, the motivation to use 
evolutionary algorithms, and the most popular techniques 
currently in use. The rest of this work is organized as 
follows: sections 2 and 3 introduce multi and many-objective 
optimization techniques respectively. Section 4 presents 
ancillary methods which can be added to different algorithms 
in order to improve their performance. In the last section, we 
review benchmarks for multi-objective test problems [21-24].

The classifi cations of multi-objective, many-objective and 
ancillary optimization approaches are shown in Table 1. 

Table 1: Classifi cation of multiple objective optimization approaches.

Multi-Objective Optimization Approaches
Many-Objective Approaches Ancillary Methods

Classical Mathematical Approaches Non-Pareto Techniques Pareto Evolutionary Techniques

• DP
• MOSDP

• Aggregating Approaches
• VEGA
• Lexicographic Ordering
• The ε-Constraint Method
• Target-Vector Approaches

• Pure Pareto Ranking
• NSGA, NSGA-II
• NPGA
• MOCOM-UA
• MOPSO
• DE
• MAGA
• RPSGA
• MOAQ
• ε- MOEA
• AMALGAM
• VEGA+NSGA 
• SPEA, SPEA2
• PAES, PEAS

• EMaOEA
• HypE, FV-MOEA
• GrEA
• NSGA-III
• θ-DEA

• Fuzzy-Based Pareto
• Set-based
• GPO
• α-Dominance
• SDE
• DBEA
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of the Pareto front. In the following, different non-Pareto 
techniques are discussed.

Weighted aggregation method: Multiple objective 
functions are combined into one overall objective function by 
using weighted aggregation of objective functions depending 
on the importance of objectives [32-34]. This process is the 
simplest optimization algorithm, but the solution largely 
depends on the assumed weights [35-36]. The approximation 
of the Pareto front becomes more accurate by using a different 
set of weights. However, many combinations of weights may 
lead to the same Pareto solution, resulting in a wastage of 
computational time [37-38]. Moreover, the weighting method 
cannot identify concavities in the Pareto set [39,40]. 

Max ( )1
m W F xi ii  , where M is the number of objectives [41]

Subject to: gi(x) ≤ 0, i=1, …, k

 wj ≥ 0, j=1, …, m

ε-Constraint method: In the constrained method, all 
objectives except one (the most preferred or primary) are 
incorporated into the constraint set and the remaining 
objective is then optimized. The values of the constraints are 
incremented, and the model is repeated until the Pareto front 
is suffi ciently represented [42-47]. Recently, the application 
of this method in conjunction with the fuzzy sets has been 
suggested [48,49].

Goal Programming (GP): In goal programming, all the 
objectives are incorporated into the constraint set and the 
aggregation of the differences between the solution and the 
goals (targets), that we wish to achieve for, is assumed as the 
objective function to be minimized. The weighted GP approach 
uses weighted aggregation of the differences [42,50].

Several variants of goal programming such as preemptive 
GP [51], min-max GP [52], fuzzy GP [53-55], chance-
constrained GP [56,57], stochastic GP [58], fractional GP [59] 
and interval GP [60] have been invented. Ignizio [61] examined 
goal programming algorithms, their history and methods of 
solution.

Lexicographic ordering: In the lexicographic ordering 
method, the user is asked to incorporate priorities of the 
objectives in order of importance. The model starts with the 
most important one and proceeds according to the assigned 
order of the objectives. After optimizing each objective function, 
this function is turned into a constraint for the subsequent 
levels of optimization [62-65]. This method is inappropriate 
when there is a large number of objectives and its performance 
is affected by the pre-defi ned ranking of objectives. Recently, 
the application of this method in conjunction with the fuzzy 
sets has been suggested [66,67].

VEGA (Vector Evaluated Genetic Algorithm): Schaffer 
[68] proposed this approach according to the simple genetic 
algorithm (GA). The difference between GA and VEGA is in the 
selection operator [69,70]. The method generates a number of 
subpopulations at each generation by performing proportional 

selection according to each objective function in turn. In 
other words, an initial population of size M is divided into k 
subpopulations (each of size M/k) where K is the number of 
objective functions [71,72]. The method then applies crossover 
and mutation operators to the merged subpopulations. The 
solutions generated by this algorithm are not necessarily 
globally non-dominated because VEGA selects individuals 
who excel in one objective, without looking at the others 
[73,74]. Moreover, merging subpopulations is similar to the 
aggregating techniques, so this algorithm has the drawbacks 
of the weighting method too. 

Pareto techniques: Pareto front-based methods use non-
domination ranking and selection to move the population 
toward the fi nal solution. In other words, solutions in a 
population are ranked based on the fronts they belong to. As 
it was mentioned earlier, the Pareto front is the plot of the 
objective functions whose non-dominated solutions, in the 
sense that there are no solutions superior in all objectives, 
are in the Pareto optimal set. Moreover, these methods need 
a special operator such as fi tness sharing, crowding distance, 
and Cell-based density techniques to maintain the diversity in 
the population. The solution with a lesser domination rank is 
preferred when two solutions lie on different fronts. But when 
both belong to the same front, the one in a less dense region 
is preferred. Fitness sharing encourages search in unexplored 
regions and causes subpopulations to form by using penalties 
for individuals in crowded regions (Figure 1). The fi tness 
sharing operator is calculated by the following equations [75]:

 
( ) ( ) 2( )1,

1

d x y


  




K
z x z yk kK

k max min
z zk k
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                   1
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,
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f x t 
f x t
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                                                    3

Where, x and y are individuals, zmax and zmin are maximum 
and minimum of objective functions, K is the number of 
objective functions and σshare is the sharing radius. A drawback 
of fi tness sharing is the diffi culty in estimating the sharing 
radius beforehand. The other is that the radius in the fi tness-
sharing method is supposed to be the same for all stages 
throughout the problem. 

Figure 1: Fitness sharing operator for a problem with two objective functions.
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The crowded distance of a solution is defi ned as the average 
distance of its two neighboring solutions along each objective 
axis (Figure 2). Solutions with higher crowding distances are 
preferred due to more spreading. The operator is calculated by 
the following equations [75].

( ) ( )[ 1, ] [ 1, ]( )[ , ]

kZ X Z Xk i k k i kcd X max mink i k Z Zk k

 


                 4

  ( )kcd x   cd xk                   5

Cell-based density operator divides the original objective 
space into cells and the density value of a cell is defi ned as the 
number of individuals located in it. Solutions with lower density 
are preferred. This operator is demonstrated in Figure 3.

In the following subsections, different Pareto techniques 
are discussed.

NSGA, NSGA-II (Non-dominated Sorting Genetic 
Algorithm): Genetic algorithm [76] has been a popular 
evolutionary method for solving single as well as multi-
objective optimization problems [77]. The non-dominated 
sorting genetic algorithm (NSGA) proposed by Srinivas and 
Deb [78], is one of the fi rst evolutionary-based multi-objective 
algorithms. The main criticisms of the NSGA approach are the 
high computational complexity of non-dominated sorting, 
lack of elitism, and specifying the sharing parameter (σshare). 
Deb, et al. [79], addressed these issues and proposed NSGA-
II as an improved version of NSGA. This algorithm has been 
successfully applied to various multi-objective optimization 
problems [10,80-88].

The NSGA-II starts with a random generation of a parent 
population. The initial population members are ranked 
on the basis of their non-dominated level and crowding 
distance. Next, through tournament selection, crossover, and 
mutation, an offspring population of equal size to the parent 
population is created. Then, parent and offspring populations 
are combined together to maintain elitism in successive 
generations. Members in the combined population are ranked 
again based on their domination and diversity. Finally, the top 
half best parameter sets are transferred to the next generation. 
This procedure is repeated till termination criteria are met 
[37,40,89-92]. The algorithm is sensitive to the value of the 
sharing factor which is also its main weakness. Figure 4 shows 
the fl owchart of the NSGA-II algorithm. 

NPGA (Niched-Pareto Genetic Algorithm): Horn, et al. [93],
extended the genetic algorithm by using Pareto domination 
ranking and fi tness sharing (i.e., niching). In this algorithm, 
selection pressure is induced by Pareto ranking and tournament 
competitions, and diversity is maintained by fi tness sharing 
[94]. Population and tournament sizes, niche radius, 
crossover and mutation rates are the parameters that control 
the performance of the algorithm. Figure 5 summarizes the 
processes of NPGA. The advantage of this algorithm is that the 
Pareto ranking does not apply to the whole population but it 
has the disadvantage that the tournament size is also required 
in addition to the fi tness sharing parameter. 

MMGA (Macro-Evolutionary Multi-Objective Genetic 
Algorithm): Chen, et al. [95], developed an effi cient macro-
evolutionary multi-objective genetic algorithm (MMGA) which 
allows the macro-evolutionary algorithm (MA) to deal with 
multi-objective optimization problems due to the capability 
of diversity preservation. This algorithm replaces the selection 
operator with macro-evolutionary which uses a connectivity 
matrix W to dynamically compare the fi tness values and 
similarities of all the strings in one generation. Each item in 
matrix W, Wi,j(t), measures the infl uence of individual j on 
individual i at generation t as [96]:

Figure 2: Crowded distance operator for a problem with two objective functions.

Figure 3: Cell-based density operator. Figure 4: Flowchart of NSGA-II algorithm.
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  ( )
, ( , )


f i f j
Wi j dis i j

                     6 

Where f(i) is the objective value of individual i, and dis(i,j) 
is the Euclidean distance between i and jth individual. Then, 
coeffi cient h is determined for individual i using Equ.7 where t 
is the generation number. The selection operator (S) determines 
the individuals which are survived [96]. 

  ( )1 ,  
Nh t W tji i j                       7

 
 1       0,   

1
0   ,     

if alive

otherwise extinct

   


h tiS ti                       8

Accordingly, individuals with positive h (S=1) survived, 
and the others are eliminated. Vacant sites that are freed by 
extinct individuals (S=0) are fi lled by applying two rules. First, 
if a uniform random number in [0,1] is less than a probability 
τ, a vacant site Pi(t+1) is fi lled by generating a new solution 
randomly, Pnew. Otherwise, the extinct solution, Pi(t) will be 
infl uenced by one of the surviving solutions, Pb, to generate a 
new solution Pi(t+1) [96].

           
1

                                     

if

if

  

 

        


P t P t P tb b iP ti Pnew
                   9

Where τ and ρ are given constants, and λ and ζ are 
uniformly distributed random numbers in [-1,1] and [0,1] 
respectively. Chen, et al. [95], showed that MMGA requires low 
computational time and yields a better spread of solutions than 
NSGA-II. Hence, it is a suitable approach for complex problems 
where the computational cost is important. But in return, more 
parameters are required.

RPSGA (Reduced Pareto Set Genetic Algorithm): The 

reduced Pareto set genetic algorithm (RPSGA) was proposed 
by Cunha [97]. Later, in order to overcome some limitations 
of this algorithm such as the fi tness deterioration along the 
generations and the signifi cant number of parameters, the 
reduced Pareto set genetic algorithm with elitism (RPSGAe) 
was developed by Cunha and Covas [98]. This algorithm uses 
a clustering method for obtaining the ranking function and 
assigning the fi tness values which reduces the number of 
parameters. But in return, it has a more complex structure 
than previous algorithms (for more information see Cunha and 
Covas [98]).

MOCOM-UA (Multi-Objective Complex Evolution): The 
MOCOM-UA algorithm was proposed by Yapo, et al. [99], in 
the fi rst step, all the individuals are ranked based on their 
domination. It is obvious that points with a smaller Pareto 
ranking should have more chances to be selected. Thus 
Equation 10 developed accordingly is used to calculate the 
selection probability, Pi; where s is the population size, ri is the 
individual rank and Rmax is the largest rank in the population 
[99]. 

( 1 ) / ( 1 )sP R r R rmax maxji i i                       10

Once all individuals have been ranked, the set of points 
with the largest rank (Rmax), is called A. Then, n subsets are 
constructed where, n is the number of points in set A. each 
subset (Sj) has n+1 members, one is selected from A without 
replacement and the remaining n are chosen randomly. This 
process is repeated for all individuals in the A (j=1, …, n). The 
worst individual in each subset {Sj} is evolved and improved 
independently using Equation 11. The new solution replaces the 
point with the worst rank in each subset and each subset is 
improved independently [100,101].

(1 )S S Snew g w                         11

Where Snew is the new point, Sw is the point with the worst 
rank and Sg is the centroid of the subset after excluding Sw. 
In this algorithm,y=2 and y=0.5 and two new solutions are 
constructed foe each subset. A dominance test is performed 
among the Snew and other points in the complex and the worst 
point are replaced by the selected non-dominatedSnew. This 
process is continued till Rmax=1 is reached which means all the 
points have become non-dominated.

Since each subset improves independently, this method is 
suitable for parallel processing. It should be also noted that the 
MOCOM-UA algorithm can provide an appropriate Pareto front 
in the context of hydrologic modeling but other applications 
of this algorithm have not been examined. Moreover, it has a 
tendency to converge prematurely for problems with a large 
number of parameters [102].

MOPSO (Multi-Objective Particle Swarm Optimization): 
The multi-objective particle swarm optimization algorithm 
developed by Moore and Chapman [103] combines the Pareto 
dominance principles and particle swarm optimization (PSO) 
algorithm. PSO was initially invented by Kennedy and Eberhart 
[104] through inspiration from the collective behavior of 
social animals such as bird fl ocking or fi sh schooling. In this 

Figure 5: Flowchart for the NPGA.
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algorithm, each potential solution is called a particle and 
the population of solutions is called the swarm [105-107]. 
The particle Xi(t) at the generation t is updated through the 
following Equations [108-110]:

1 1t t tX X Vi i i                       12

   1
11 2 2

t t T TV wV c r pbest X c r gbest Xti i i i i
                  13

Where Vi(t) is velocity, pbesti and gbestt (local and global 
bests) are the best particles that Xi and the entire swarm have 
viewed respectively. w is the inertial weight of the particle and 
controls exploration and exploitation in the search space. r1 and 
r2 are random numbers in the range [0, 1], and c1 and c2 are 
specifi c parameters that control the effect of the personal and 
global best particles.

Although the MOPSO is a popular algorithm in many fi elds 
[16,111-113], premature convergence and easy trapping into 
regional optimum are the problems. The diffi culty in applying 
a PSO algorithm in multi-objective optimization is that the 
solution of a problem with multiple objectives is not a single 
one but a set of non-dominated solutions. Hence, there are 
no clear concepts of local and global bests [114-116]. There are 
various types of MOPSOs which use leader particles to guide 
other particles inside the problem domain [117,118].

Non-dominated sorting PSO uses an external archive for 
storing leaders set and a non-dominated sorting mechanism. 
In this approach, the particle has updated its position against 
all the best positions of the swarm [119]. Sigma-MOPSO assigns 
the sigma value to each particle and makes the selection 
pressure higher [120]. Optimized MOPSO uses the crowding 
distance to fi lter out leader solutions [106]. Another MOPSO 
uses the concept of Pareto dominance to determine the fl ight 
direction of a particle [121]. Sierra and Coello [122] presented a 
comprehensive review of the various MOPSOs. Moreover, Gad 
[123] surveyed all changes that have been made to PSO since its 
inception in the mid-1990s.

ε- MOEA (ε-Domination Based Multi-Objective 
Evolutionary Algorithm): The ε-dominance concept allows 
the algorithm to control the achievable accuracy in the 
obtained Pareto-optimal solutions [124]. In this method if 
the difference between solutions is small, they do not dominate 
each other; thereby good diversity is achieved in a population 
[125]. The ε-dominance method uses two populations; the main 
population is initialized randomly and the ε-non-dominated 
solutions of it are copied to an archive population. Choosing 
a solution from both populations, the offspring solution 
is created by crossover. To choose a solution from the main 
population, the fi rst two individuals are picked up randomly 
from that population. Next, a domination competition is made 
and the non-dominated one is chosen. If the two solutions are 
non-dominated to each other, one of them is selected randomly 
from the archive population. Solution from ε-non-dominated 
population is chosen randomly. If the offspring dominates one 
or more solutions in the main population, it replaces one of 
them randomly. Otherwise, if any individual dominates the 
offspring, the offspring is rejected. If neither of the above two 

cases occur, random replacement is used. Also, the offsprings 
are compared with each solution of the archive population by 
ε-dominance test. For this purpose, an array (B) is assigned 
to each solution in the archive as follows (Equation 14) where 
M is the number of objectives and fj

min and εj are the minimum 
possible value and the allowable tolerance in the j-th objective 
respectively [80,126,127]. The array divides search domains 
into grids having εj size in the j-th objective. 

B= (B1, B2, …, BM)T                14

 B ( )((  ) / )j
minf int f fj j j   

If array B for the offspring dominates the array of any 
archive member, it replaces that solution. On the contrary, the 
offspring is rejected if the array of any solution in the archive 
population dominates it. If the offspring shares the same B 
vector with a member in the archive, the usual non-domination 
check is performed [80].

Despite the mentioned advantages of the algorithm, 
it should be noted that ε must be defi ned by the decision 
maker and a large number of good solutions may be lost if 
this parameter is not chosen properly. Moreover, extreme 
individuals and solutions in the horizontal and vertical parts 
of the Pareto front are lost. Later, Hernandez-Diaz, et al. [128] 
proposed a modifi ed version of ε-MOEA, called pa ε-dominance, 
to overcome some limitations of this algorithm. 

DE (Differential Evolution): Storn and Price [129] introduced 
the Differential Evolution algorithm and later elaborated 
on some of its schemes [130]. The main steps of the DE are 
initialization, mutation, recombination, and selection [131,132]. 
It is worthwhile to mention that unlike the similarities of the 
names, these operators are actually different from those used 
in EAs [133]. After the initialization of a random population, the 
mutation operator which plays a key role in the optimization 
process expands the search space based on the distribution of 
solutions in the population. For this purpose, two individuals 
are selected randomly (Xr1,t, Xr2,t) and the weighted difference 
between them is calculated. The weight is a mutation factor (F). 
The mutant vectors are created by adding each target vector 
(Xro,t) to the calculated weighted difference. According to this 
method, an individual is selected at random for replacement 
and three different individuals (X) are selected as parents, one 
of which is set as the main parent. Then, the trial vector (V) is 
produced as follows [134]:

Vi,t = Xro,t + F(Xr1,t – Xr2,t)                   15

The trial vector is compared only against its one counterpart 
target individual and the selection operator chooses the one 
with better performance. Otherwise, the chosen vector for 
replacement is retained in the population [135,136]. The process 
is repeated for several generations until the termination criteria 
are met.

DE algorithm requires fewer parameters as compared to the 
other methods which make it suitable for high-dimensional 
complex problems. Notwithstanding, unstable convergence 
in the last period and easily being trapped into local optimum 



110

https://www.peertechzpublications.com/journals/global-journal-of-ecology

Citation: Karami F, Dariane AB (2022) A review and evaluation of multi and many-objective optimization: Methods and algorithms. Glob J Ecol 7(2): 104-119. 
DOI: https://dx.doi.org/10.17352/gje.000070

are the problems. Gong and Cai [137] presented an improved 
DE algorithm by combining several features of evolutionary 
algorithms in a unique manner. Santana-Quintero and Coello 
[132] and Cai, et al. [138] incorporated the ε-dominance concept 
into the DE algorithm to solve MOPs.

MOAQ (Multi-objective Ant Colony): This algorithm 
imitates ants’ behavior, where a family of agents is considered 
for each objective function. Each family fi nds solutions that 
depend on solutions found by the rest of the families [139-
141]. The pheromone is updated in each step, in which the 
corresponding best ant is determined [142-144]. The scheme 
can be summarized as follows where n and m are considered as 
the number of families and agents for each family respectively 
[145]:

i=1

Do j=1, m

Find a solution for objective 1

End do

Do i=2, n

Do j=1, m

Use the solution found with ant j in objective i-1 to constrain the 
solution for ant j (of objective i)

Find a solution for objective i

End do

End do

Evaluate the found solutions

Do j=1, m

If solution j violets any constraint

Apply punishment to all its components

Else if solution j is non-dominated

Apply reward to all its components

Introduce solution j into the Pareto set

Remove all dominated solutions from the Pareto set

Else (solution j is dominated)

Neither applies punishment nor reward

End if

End do

These steps are repeated until the maximum number of 
iterations is met or all the solutions are non-dominated. This 
is an effi cient and time-saving algorithm because it searches 
only a small part of the total search space [146,147]. But the 
performance of this algorithm depends on the number of 

objectives and the number of ants. This method is used in 
many fi elds [148,149].

Amalgam: The AMALGAM algorithm combines the 
strengths of multiple meta-heuristics algorithms dynamically 
[150,151]. Each sub-algorithm generates its share of the 
offspring creation. The number of offspring that sub-algorithm 
j must generate during generation t, jNt , is calculated as 
follows where K and 1

jSt  are respectively the number of sub-
algorithms and offspring that sub-algorithm j contributes to 
the next generation. The equation has some drawbacks in the 
inclusion of inferior sub-algorithms, hence other methods for 
offspring partitioning should be studied. This method takes 
full advantage of the power of optimization algorithms and 
performs well with increasing number of dimensions [136]. 

1

( )1
1

1

jSt
jNj tN Nt hSk t

h hNt






 

                 16

VEGA+NSGA: Mukta, et al. [72], proposed a new approach 
by using the ideas behind the NSGA-II and VEGA. In this 
algorithm, the initial population of size M is subdivided into 
(k – 1) subpopulations of size M/(k – 1) where k is the number 
of objective functions (f1 to fk). Subdividing is done with respect 
to each overlapping pair of objective functions and merging is 
done through genetic operations. For this purpose, the fi rst 
subpopulation will be created with respect to the performance 
of f1 and f2, the second will be created with respect to f2 and f3, and 
in the same way, the k –1st subpopulation will be created from 
fk–1 and fk. After ranking all subpopulations, k-2 subpopulations 
are created from elite members using the NSGA approach. The 
non-dominated individuals in the two fi rst subpopulations of 
the current step (non-dominated solutions with respect to f1, f2, 
and f2, f3 pairs) are used to create the fi rst subpopulation of the 
next step by applying the crossover operator. In the same way, 
the last subpopulation of the next step (k-2th subpopulation) 
is created with respect to fk-2, fk-1, and fk-1, fk pairs by using non-
dominated solutions in k-1 and k-2th subpopulations. The 
procedure, as shown in Figure 6, is iterated in the same way 
until solutions are reached [72]. 

In the VEGA algorithm after shuffl ing sub-populations, 
a separate fi t value is not calculated but in the combined 
algorithm more fi t values are gradually reached. Also, unlike 
some other methods such as the NSGA this algorithm is not 
sensitive to the value of the sharing factor. 

Figure 6: The VEGA+NSGA algorithm procedure.
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SPEA, SPEA2 (Strength Pareto Evolutionary Algorithm): 
The strength Pareto evolutionary algorithm (SPEA) introduced 
by Zitzler & Thiele [152] uses a clustering technique to estimate 
the crowding degree of an individual. SPEA starts with an 
initial population and an empty archive. At each generation, 
non-dominated individuals are copied to the archive and for 
each individual, in this set, a strength value is computed (S(i)). 
The strength value for individual i in the archive is the number 
of population members that are dominated by or equal to i 
divided by the population size plus one. A fi tness value F(j) is 
also assigned to the population members. This fi tness of an 
individual j is calculated by summing the strength values S(i) of 
all archive members i that dominate or are equal to j plus one. 
The selection operator is done by means of binary tournaments 
and the offspring population is generated by recombination 
and mutation [22,153-155].

The clustering technique used in SPEA may lose outer 
solutions which should be kept in the archive in order to obtain 
a good spread of non-dominated solutions. Moreover, this 
algorithm behaves like a random search algorithm in the case 
when the archive contains only a single individual because all 
population members have the same rank regardless of their 
dominance position. Zitzler, et al. [156] designed SPEA2 to 
overcome these defi ciencies. In SPEA2 each individual i in the 
archive tP


 and the population Pt is assigned a strength value 

S(i), representing the number of solutions it dominates (Eq. 
17). Then, the raw fi tness is determined by the strengths of 
its dominators in both archive and population (Eq. 18). This 
algorithm considers the kth nearest neighbor of an individual in 
the population for density estimation [12,156].

  {  |^ }S i j j P Ptt i j 


                   17

  ), (  S jj P P j it tR i 
                   18 

Where Pt and Pt


are population and archive sets. Also, |.| 
and ≻ indicate the number of elements in a set and Pareto 
dominance relation, respectively. 

PAES (Pareto Archived Evolution Strategy), PEAS (Pareto 
Envelope-based Selection Algorithm): Knowles and Corne 
[157] proposed the local search method named Pareto Archived 
Evolution Strategy (PAES). Then, Corne, et al. [158] introduced 
Pareto Envelope-Based Selection Algorithm (PEAS) which 
incorporates ideas from SPEA and PAES. The PAES divides 
the entire objective space into a number of hyper-boxes. Each 
offspring is compared with a continuously updated archive 
population for its inclusion. If the offspring is non-dominated 
by the archive population, it is compared with the hyper-box 
having the maximum number of solutions in it. In the case 
offspring resides in a less crowded hyper-box, it is accepted and 
a member from the maximally-crowded hyper-box is deleted 
at random [80]. In other words, the initial random solution, c, is 
generated and added to the archive. The solution m is produced 
by mutating c. If c or any member of the archive dominates 
m, m is discarded. On the other hand, if m dominates c, c is 
replaced with m, and m is added to the archive. If neither of the 
above two cases occurs, a special test is applied to determine 
which becomes the new current solution and whether to add 

m to the archive or not. The scheme can be summarized as 
follows [159]: 

If (the archive is not full) then

Add m to the archive

If (m is in a less crowded region of the archive than c) then 

Accept m as the new current solution

Else

Maintain c as the current solution

End if

Else

If (m is in a less crowded region than a member in the 
archive) then

Replace m

If (m is in a less crowded region of the archive than c) then 

Accept m as the new current solution

Else

Maintain c as the current solution

End if

Else

If (m is in a less crowded region of the archive than c) then

Accept m as the new current solution

Else

Maintain c as the current solution

End if

End if

End if

The PEAS algorithm is a population-version of PAES which 
allows more than one member to be present in each hyper-box.

Many-objective optimization techniques

Many-objective optimization has been gaining increasing 
attention in recent years. As it was mentioned earlier, when 
the number of objectives exceeds four, the proportion of non-
dominated objective solutions increases rapidly. This leads 
the Pareto optimality to signifi cantly diminishing selection 
pressure during the evolutionary process [160-162]. Selection 
pressure reduces reproductive success in a proportion of a 
population potentially. Visualization of a high-dimensional 
objective space [163,164] and obtaining a good representation 
of the Pareto front [84] are also other challenges of many-
objective optimization problems. Reducing the number of 
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objectives by keeping the least information about them is the 
simplest way to deal with these problems [165-168]. However, 
this approach does not work in many problems; hence, various 
algorithms have recently been proposed to tackle many-objective 
problems which are described as follows.

EMaOEA (Ensemble of Many-Objective Evolutionary 
Algorithms): Zhou, et al. [14] used a combination of Pareto 
dominance selection, diversity maintenance, and elitism strategy 
and proposed an ensemble of many-objective evolutionary 
algorithms (EMaOEA). This algorithm simultaneously runs 
different many-objective evolutionary algorithms in parallel and 
maintains interactions between them by merging all offspring 
subpopulations [169]. Since the performance of MaOEAs may 
be different from one problem to another, EMaOEA runs them 
in parallel and maintains interactions between them by a 
simple information-sharing scheme. Steponavice, et al. [170] 
used a machine learning technique to switch among different 
algorithms during the optimization search based on the predicted 
performance of each algorithm at the time.

HypE (Hypervolume Estimation Algorithm for Multi-
Objective Optimization): The hypervolume (HV) indicator 
[152,171] is a quality indicator that is fully sensitive to Pareto 
dominance. There have been several well-established 
hypervolume-based MOEAs available in the literature [172-176]. 
The main drawback of this indicator is the computational cost 
of HV which grows exponentially with the number of objectives 
increasing [177,178]. To address this issue, Bader and Ziztler 
[179] proposed a fast search algorithm that uses Monte Carlo 
simulation to approximate the exact hypervolume values. The 
hypervolume indicator gives the volume of the objective subspace 
that is dominated by a solution set A ⊂ Rd under consideration. 
For more details in defi nitions see Ziztler, et al. [180]. 

This method is more complicated in comparison with other 
many-objective algorithms. The main drawback of hypervolume 
indicator-based algorithms is the high time complexity for 
measuring the exact hypervolume contributions of different 
solutions. To cope with this problem, Jiang, et al. [181] proposed 
Fast hypervolume indicator-based MOEA (FV-MOEA) to quickly 
update the exact hypervolume contributions of different 
solutions. In this algorithm, the hypervolume contribution of a 
solution is only associated with partial solutions rather than the 
whole solution set for saving time.

GrEA (Grid Based Evolutionary Algorithm): Grid-based 
algorithms exploit the potential of the grid-based approach to 
strengthen the selection pressure towards the optimal direction 
while maintaining an extensive and uniform distribution 
among solutions. Each solution in the grid has a deterministic 
location [182]. The number of solutions whose grid locations 
are analogous refl ects diversity. Also, the grid location of an 
individual compared with other solutions determines the 
convergence. This approach compares solutions qualitatively 
and quantitatively [177,178].

The lower (lbk) and upper (ubk) boundaries of the grid for 
the kth objective with a population P are determined using the 
following equations, where ndiv is the number of the divisions of 
the objective space in each dimension [182]:

     ( ) / (2* )lb min P max P min P ndivk k k k                  19

     ( ) / (2 * )ub max P max P min P ndivk k k k                  20

Hence, the grid width dk in the kth objective can be determined 
according to the following formula:

( ) /d ub lb ndivk k k                   21

Thus, the grid location of a solution in this objective Gk(x) 
can be calculated by Equation 22 where Fk(x) is the actual 
objective value in the kth objective:

     ( ) / )G x int F x lb dk k k k                  22

Yang, et al. [182] take three grid-based criteria into account 
to assign the fi tness of individuals. They are grid ranking 
(GR), grid coordinate point distance (GCPD), and grid crowding 
distance (GCD). The convergence of individuals is evaluated 
by GR and GCPD, while GCD appraises the diversity in the 
population. By considering M as the number of objectives, these 
criteria are determined according to the following equations 
[182]:

  ( )( 1) M G xk kGR x                        23

 
    * 2( )

1
 

M F x lb G x dxk k k
dk k

GCPD x
 


               24

  ( , ))( )M GD x yxCD x yG N                    25

N(x) stands for the set of neighbors of x and two 
individuals x and y are neighbors if GD(x,y)<M where, 

     | |1, M G x G yGD x y K Kk  

Note that, the parameter ndiv (the number of divisions) is 
required to set the grid environment in this algorithm. Also, 
the effect of the population size has not been investigated in 
this method. 

NSGA-III: Deb and Jain [183] proposed NSGA-III on the 
basis of the NSGA-II algorithm with signifi cant changes in 
its selection mechanism for many-objective problems. This 
algorithm uses a predefi ned set of reference points H on a unit 
hyper-plane to ensure diversity in the solutions. The reference 
points can be predefi ned in a structured manner or by the user. 
Ruiz, et al. [184] used the reference points and suggested a 
preference-based evolutionary multi-objective optimization 
called weighting achievement scalarizing function genetic 
algorithm. If M and P are considered as the number of 
objectives and divisions along each objective respectively, the 
total number of reference points (H) is given by the following 
Equation [185]:

1M P
H

P
  

  
 

                   26

In each iteration, an offspring population Qt is created from 
population Pt, both having size N, using the recombination 
and mutation operators. Then, the two populations Pt and Qt 
are merged together to form a new population Rt (of size 2N). 
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Similar to NSGA-II, the best N members from Rt are chosen 
for the next generation based on Pareto dominance (St). The 
NSGA-II algorithm selects solutions with the largest crowding 
distance values which do not perform well on many-objective 
problems. Hence, NSGA-III uses a pre-defi ned guidance 
mechanism to choose diverse solutions for the population. 
First, the ideal point of the St is determined by identifying 
the minimum values of each objective function. Then, each 
objective value of St is normalized by subtracting objective fi 
by zmin     '    x fi i

minf x Zi , so that the normalized ideal 
point of St becomes a zero vector. Afterward, the perpendicular 
distance between members in St and each of the reference lines 
(joining the ideal point with a reference point) is computed. All 
members in St are then affi liated with a reference point having 
the minimum perpendicular distance. In this way, a reference 
point may have one, more, or no population members. The 
number of population members that are associated with 
the jth reference point is defi ned as the niche count; ρj. The 
reference points with a lesser niche count are maintained 
for the next generation to keep diversity [183]. Studies show 
that The NSGA-III performs well in different problems and 
does not depend on the type of the problem. Deb and Jain 
[183] demonstrated that using reference points and NSGA-
III niching methodology makes this algorithm suitable for 
solving up to 15 objective functions. NSGA-III does not work 
for less than three objective optimization problems. Seada 
and Deb [186] developed a unifi ed evolutionary optimization 
algorithm U-NSGA-III, based on NSGA-III to make it capable 
of working for bi-objective or mono-objective problems. Yi, et 
al. [187] introduced an adaptive mutation operator to enhance 
the performance of the standard NSGA-III algorithm. Zhu, et 
al. [188] proposed improved NSGA-III by using a novel niche 
preservation procedure. Gonçalves, et al [189] used adaptive 
operator selection mechanisms in this algorithm. Tanabe 
and Oyama [190] investigated the impact of population size, 
number of children, and number of reference points on the 
Performance of NSGA-III. It should be noted that the impact 
of the number of divisions (P) which must be defi ned by the 
decision maker is not clear and needs further investigation. 

θ-DEA (θ-Dominance Evolutionary Algorithm): NSGA-III 
relies on Pareto-dominance to push the population towards 
the Pareto front (PF), leaving room for the improvement 
of its convergence ability. The θ-dominance evolutionary 
algorithm, proposed by Yuan, et al. [177], aims to enhance the 
convergence of NSGA- III by exploiting the fi tness evaluation 
scheme based on decomposition but still inherits the strength 
of the former in diversity maintenance. The environmental 
selection mechanism in the proposed algorithm is based on 
θ-dominance. In θ-DEA, the clustering operator is done to the 
population St (which was defi ned in the NSGA-III sub-section) 
at each generation. The clustering works in the normalized 
objective space, where the ideal point is the origin. This 
algorithm enhances the convergence ability of NSGAIII in 
high-dimensional objective space but θ is the main parameter 
that must be defi ned by the decision-maker. For more details 
see Yuan, et al. [177].

Ancillary methods

The convergence ability of Pareto-based evolutionary 

algorithms sharply reduces for many-objective optimization 
problems as the solutions are diffi cult to rank by the Pareto 
dominance. In order to help many-objective algorithms to 
increase the selection pressure toward the global optimal 
solutions and well-maintain the diversity of the obtained 
solutions, some ancillary techniques have been proposed in 
recent years. These ancillary methods which can be merged 
into the many-objective algorithms are discussed in the 
following sections.

Fuzzy-based pareto: The concept of fuzzy logic is adopted 
to defi ne a fuzzy Pareto domination relation in various studies 
in order to compare two solutions [191-193]. 

Eshtehardian, et al. [194] embedded fuzzy sets theory into 
GA to solve the discontinuous and multi-objective fuzzy time-
cost model with a fairly large search space. He, et al. [11], applied 
the fuzzy set based on the left Gaussian function to quantify 
the degrees of domination, ranging from dominating to being 
dominated and in between, with various degrees of domination 
in each objective. The fuzzy approach deals with uncertainties 
and the fuzzy-based Pareto lets the decision-maker use his 
own level of risk acceptance. Also, this method addresses the 
impact of uncertainties related to data. Nevertheless, selecting 
an appropriate fuzzy function has an important role in this 
method.

Set-based: In set-based many-objective algorithms, each 
objective of the original optimization problem is transformed 
into a desirability function according to the preferred region 
defi ned by the decision maker. Afterward, the transformed 
problem is converted to a bi-objective optimization one by 
taking hyper-volume and the decision maker’s preferences 
as the new objectives, and a set of solutions of the basic 
optimization problem as the new decision variable [195]. If the 

range of the ith objective function is explained as [ , ]m mf in f axi i ,

the DM’s preferred region in the ith objective is represented 

as ,i i    where (  á â )i i
min maxf fi i  . Hence, the 

minimum and maximum objective functions are required in 
this method. Considering all objectives, the preferred region 

can be formulated as [ , ]
m

i ii
    where M is the number of 

objectives. Obviously, the DM’s preferred region is a hypercube 
in the objective space for many-objective problems. Thereafter, 
the objectives are normalized by the following formula; where  
di(fi(x)) is the ith normalized objective function [116,195].

      exp exp * ,       1,2, ,d f x a b f x i Mi i i i i              27

By mapping the values ai and βi into the bounds of the 
normalized objectives, the values of ai and bi are obtained.

Gong, et al. [195] proposed a set-based genetic algorithm 
and used a genetic algorithm to tackle the converted bi-objective 
optimization problem. Later, an improved set evolution multi-
objective particle swarm optimization (S-MOPSO, for short) 
was proposed by Sun, et al. [116]. 

This method dynamically determines a preferred region 
to guide the algorithm. Although using this ancillary method 
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makes high computational complexity, it can improve the 
convergence and the distribution of the Pareto front. 

GPO (Generalized Pareto Optimality): Aiming at improving 
the scalability of Pareto-based MOEAs, Zhu, et al. [196] 
generalized the Pareto optimality, both symmetrically 
and asymmetrically, by providing nondiscriminatory 
expansions of the dominance area of solutions. With the aid 
of the generalized Pareto optimality technique (GPO), many-
objective evolutionary algorithms could acquire the fl exibility 
of changing their selection pressure within certain ranges, 
which would allow them to maintain their evolvability when 
dealing with problems with many-objectives [196]. Despite 
the abovementioned advantages, it is worth noting that the 
method is diffi cult to understand and implement.

α-Dominance: The α-dominance strategy was proposed 
by Ikeda, et al. [197] and improved by Dai, et al. [198]. This 
method increases the selection pressure by modifying the 
fi tness values. It should be noted that if the value of α is too 
large, the selection pressure will be enhanced, but it may cause 
some optimal solutions with their objective vectors in the 
intermediate region of the objective space to become dominated 
solutions under this dominance strategy. On the other hand, if 
the value of α is too small, it would be diffi cult to ensure the 
convergence of solutions to the true Pareto front. Therefore, 
assigning a suitable value of α to improve the convergence and 
maintain the diversity is a very crucial and also diffi cult for 
this strategy. 

This method permits a solution x to dominate another 
solution z if x is slightly inferior to z in one objective while 
largely superior to z in some other objectives. For this purpose, 
a relative fi tness vector t (x, z) is calculated by the following 
equation and the dominance relation is determined by this 
value [198]:

         ,   ( )t x z f x f z f x f zi i i ij j ji j
   


            28

Where fi (x) is the fi tness value of solution x on the ith 
objective. 

SDE (Shift-Based Density Estimation): Shift-based density 
estimation tries to “put” individuals with poor convergence 
into crowded regions. For this purpose, the poorly converged 
individuals are assigned a high-density value, which helps 
them to be eliminated easily during the evolutionary process. 
In this method, after estimating the density of an individual 
A, the positions of other individuals in the population are 
shifted according to the comparison of convergence between 
these individuals and A on each objective. It means that if an 
individual performs better than A for an objective, SDE shifts it 
to the same position as A on this objective. Li, et al [107] provide 
an example to clarify the issue. They considered a population 
of four non-dominated individuals A, B, C, and D with their 
objective value (0, 1, 1, 100), (1, 0, 2, 1), (2, 1, 0, 1), and (1, 2, 1, 0). 
In this population, individual A performs the worst regarding 
convergence. This individual also has a higher probability of 
selection operator than those poorly converged non-dominated 
individuals. The shift-based density estimation strategy is 
proposed to end this. 

DBEA (Decomposition Based Evolutionary Algorithm): 
Decomposition is a basic strategy in traditional multi-
objective optimization which has been studied to deal with 
many-objective optimization problems [199]. Jain and Deb 
[183] used a scaling method to deal with objectives in different 
orders of magnitude. Asafuddoula, et al. [200] proposed the 
decomposition-based evolutionary algorithm with epsilon level 
comparison (DBEA-Eps) relied on using an adaptive epsilon 
level comparison to avoid aggregation. In this algorithm, a 
hyperplane was constructed using M extreme non-dominated 
solutions which in turn provided the lengths of the axis 
intercepts. DBEA-Eps is further improved (I-DBEA) by the 
authors [201]. This ancillary method makes high computational 
complexity but can improve the performance of the algorithm.

Social choice: Dariane and Karami [202] provided a many-
objective optimization algorithm using social choice (SC) 
and melody search (MeS) algorithms. They showed that the 
proposed many-objective algorithm is able to handle as many 
objectives as needed without any computational burden and/
or algorithm complexity. The social choice (SC) procedures 
are voting systems for group decision-making when available 
information is minimal, or mainly qualitative [203]. The 
subject is to derive social orderings when individual welfare 
satisfi es certain assumptions [204]. 

Test benchmarks

Benchmark problems are important for evaluating the 

Name  Function  Parameter Domain  

ZDT1  

=  

= 1 + 9  

h = 1 −  

[0,1]  

ZDT2  as ZDT1, except  h = 1 − ( )  [0,1]  

ZDT3  as ZDT1, except  h = 1 − − ( )  ( 10 )  [0,1]  

ZDT4  as ZDT1, except  = 1 + 10 + ∑ ( − 10  ( 4 ) )  ∈ [0,1]  
, …, ∈ [− 5,5] 

ZDT6  

= 1 −  ( − 4 ) ( 6 )  

= 1 + 9( ) .  

h = 1 − ( )  

[0,1]  

DTLZ1  

= ( 1 + ) 0.5  

: = ( 1 + ) 0.5( ) ( 1 − )  

= ( 1 + ) 0.5( 1 − )  

= 100 [ + ( ( − 0.5) −  ( 20 ( − 0.5) ) ) ]  

[0,1]  

DTLZ2  

= ( 1 + )  ( 2)  

: = ( 1 + ) (  ( 2) ) ( 2)  

= ( 1 + ) ( 2)  

= ( − 0.5)  

[0,1]  

DTLZ3  As DTLZ2, except the equation for g is replaced by the on from DTLZ1  [0,1]  

DTLZ4  As DTLZ2, except all  �  are replaced by  , where  > 0 [0,1]  

DTLZ5  As DTLZ2,  except all  , …, �  are replaced by  
( )

 [0,1]  

DTLZ6  As DTLZ5, except the equation for g is replaced by  = ∑ .  [0,1]  

DTLZ7  

: =  

= ( 1 + ) ( − [
1 +

( 1 + ( 3 ) ) ] 

= 1 + 9  

[0,1]  

Table 2: ZDT and DTLZ Problems.
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algorithms. Test problems should be easy to describe, easy 
to understand and visualize, and easy to implement and 
their optima are often known in advance [205]. The six test 
problems called The ZDT Tests, created by Zitzler, et al. [22], 
are the most widely employed benchmarks for multi-objective 
problems. A variety of research studies use ZDT problems for 
evaluating their algorithms which facilitates comparisons with 
new algorithms. However, the ZDT problems have only two 
objectives thus they are not suitable for MaOEA.

The DTLZ benchmark problems, created by Deb, et al. [23], 
represent a considerable step forward, as they allow researchers 
to investigate the properties of many-objective problems in a 
controlled manner, with known problem characteristics and 
knowledge of the Pareto optimal front. The fi ve real-valued 
ZDT and DTLZ problems are presented in Table 2 [206], noting 
that ZDT5, the omitted problem, is binary encoded and has 
often been omitted from the analysis. 
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